азот

Азот

Азот — это бесцветный газ, один из самых распространенных химических элементов на нашей планете, в таблице Менделеева обозначается символом N от лат. Nitrogenum, что означает безжизненный (azoos по-гречески). Еще в школе мы узнаем, что газообразный азот составляет 78 процентов земной атмосферы. Если положить его на одну чашу воображаемых весов, то на другую их чашу пришлось бы для равновесия взгромоздить 4 х 1015 тонн гирь.

Азот в виде его соединений играет колоссальную роль в жизни человечества. Земледельцы ежегодно вносят в почву огромное количество азотных удобрений. Содержащие азот соединения находят всевозрастающий спрос в промышленности — это красители, различные виды топлива, полимеры. Казалось бы, потребность легко удовлетворить за счет безбрежного океана атмосферы. Однако каждому школьнику хорошо известна инертность этого вещества: двухатомные молекулы, из которых состоит газообразный азот, при обычных условиях не реагируют практически ни с какими другими веществами.

Вместе с тем давно известно обстоятельство, которое заставляет химиков упорно искать новые пути. Это впервые установленная русским ученым С. Виноградским еще в 90-х годах XIX столетия биологическая фиксация азота некоторыми микроорганизмами, а также водорослями. Выходит, химическая инертность не мешает усвоению азота живыми организмами? Ведь они не могут при этом пользоваться высокими температурами и давлением. Значит, среди ферментов — биологических катализаторов, содержащихся в теле бактерий, — есть такие, которые позволяют превратить азот в белки при обычных температурах и давлениях в присутствии воды и кислорода.

Поразительным оказалось то, что активные к азоту системы не были уникальными. Со многими из них химики работали раньше и даже применяли в промышленных процессах.

Вслед за этим было сделано и другое открытие, рушившее психологический барьер в отношении азота. Ученые получили в итоге своеобразный комплекс рутения и азота: молекула газа в нем была прочно привязана к атому металла. Такие комплексы других молекул с соединениями металлов были известны ранее и широко изучались. Однако никто не ожидал, что с ионом металла могла так прочно связаться молекула «инертного» азота.

Ученым не удалось выяснить условий связывания свободного азота. Однако было установлено, что и свободный азот способен образовывать комплексы с соединениями рутения, причем иногда в присутствии воды и кислорода. Затем в разных странах мира начались интенсивные поиски, и выяснилось, что азот связывается в комплексы с рядом различных металлов.

Здесь оставалось снова только удивляться, почему ни комплексы азота, ни его реакции в растворах не были открыты ранее.

Тем временем ученые продвинулись дальше. Во-первых, удалось показать, что процесс можно ускорить — с помощью катализаторов связывать большие количества молекулярного азота. Во-вторых, открыли, что под действием соединений тех же переходных металлов свободный азот способен вступать в реакции с некоторыми органическими соединениями. Так был найден перспективный путь получения ценных химических веществ из молекулярного азота.

Теперь предстояло связать воедино два наметившихся направления — химию комплексов молекулярного азота и изучение реакции его восстановления. Ведь именно комплексообразование (как это было ранее найдено для других молекул) в принципе должно было «активировать» инертные молекулы газа. Однако в известных комплексах он оставался инертным. Длительная теоретическая и экспериментальная работа дала ответ на вопрос, какими должны быть комплексы, чтобы азот в них был химически активным. Естественно, здесь невозможно дать детальное описание разработанной теории. Но из нее, в частности, следует, что активные по отношению к дальнейшим реакциям комплексы могут наблюдаться не при обычных, а при пониженных температурах. Ученые стали выделять из растворов целый набор комплексов, в которых молекула азота активирована к дальнейшим реакциям.

Ободренные успехами исследователи попытались связать азот непосредственно в водном растворе, используя сравнительно слабые восстановители, — так, как это делают бактерии и водоросли. В поисках недостающих данных пришлось прибегнуть к помощи живой природы.

Уже было известно, что в ферментативных системах бактерий молекула азота активирует молибден и этот металл нельзя заменить никаким другим, кроме ванадия. Исследователи сосредоточили свое внимание на соединениях именно этих металлов, считая, что природа не случайно остановила на них свой выбор.

В 1970 году наконец получили результат, к которому исследователи стремились многие годы. Удалось открыть системы, которые фиксируют азот в присутствии соединений молибдена и ванадия в водных и водно-спиртовых средах. Основным конечным пунктом реакции, как оказалось, был почти исключительно гидразин. В несколько измененных условиях удавалось наблюдать и преимущественное образование аммиака.

Итак, еще одним парадоксом в химии стало меньше. Опровергнуто представление об инертности азота, открыты новые пути превращения огромных атмосферных «залежей» этого газа в продукты, нужные человеку.